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A generalized theory of fracture 
mechanics 

E. H. ANDREWS 
Department of Materials, Queen Mary College, London, UK 

A fracture-mechanics theory is developed which gives fracture criteria for solids in 
general, without limitations as to their linearity, elastic behaviour or infinitesimal strain. 
Besides the "standard" results of the theory which reduce to familiar forms like the 
Griffith equation for linear, elastic solids, several new results emerge from the theory. 
These include a relationship between the surface work and the true surface energy of the 
solid, an explanation of certain departures from standard fracture mechanics obtained with 
inelastic materials, and a prediction and explanation of the phenomenon of notch brittle- 
ness. Further applications of the theory, such as adhesive failure and fatigue, will be 
explored in a subsequent paper. 

1. Introduction 
The concepts of fracture mechanics, originating 
with Griffith [1] in 1920 and extended by 
Orowan [2], Irwin [3], Benbow and Roessler 
[4], Rivlin and Thomas [5] and others [6], are 
fundamental to the understanding of fracture 
processes and to their characterization. Fracture 
mechanics enable us to distinguish the intrinsic 
resistance to fracture of elastic solids (e.g. their 
fracture toughness) from geometrical factors 
(such as flaw size) which also affect such 
parameters as tensile strength, fracture strain 
and so on. The determination of fracture 
toughness is now a standard procedure in 
materials testing and this parameter is in- 
creasingly employed in engineering specifica- 
tions. 

The growing importance of fracture mechanics 
and of parameters derived therefrom underline, 
however, some serious deficiencies in the theory. 
These can be enumerated as follows. 

1. Linear fracture mechanics is based upon the 
assumptions of linear elasticity and infinitesimal 
strain. Both of these assumptions break down in 
the highly strained vicinity of the crack tip, 
especially when plastic zones are formed. The 
very high values typically observed for "surface 
energy" using the Griffith approach bear 
eloquent testimony to the inelastic nature of the 
deformations. Yet these values are derived on 
the assumption of elastic behaviour. 

2. The elastic equations commonly used to 
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characterize the stress distribution around a 
crack are only approximate even if the material 
is everywhere elastic e.g. they require zero tip 
radius and fail to predict the correct stress at 
large distances from the crack tip. 

3. Even the interesting and elegant work of 
Rice and others [13-15] on strain fields in 
elastic-plastic and strain-hardening solids (see 
later) is really a non-linear elastic treatment and 
does not take into account the energy losses 
which manifest themselves as the crack begins to 
propagate. 

4. The energy balance approach developed by 
Rivlin and Thomas [5] for rubber, whilst it 
avoids the restriction of infinitesimal strains, still 
requires the material to be reversibly elastic 
(as does linear fracture mechanics). Needless to 
say, real materials are not reversible, especially 
when the strains are large. 

Many attempts have, of course, been made to 
compensate for these effects. For example, crack 
lengths are "corrected" by adding the length of 
any plastic zone which may form, and "con- 
stants" in the Rivlin-Thomas approach are 
allowed to vary to cope with the deficiencies of 
theory. Such devices, however, not only reduce 
the elegance of the theory but are soon exhausted 
as attempts are made to extend fracture 
mechanics treatments to a wider range of 
materials and phenomena. In some cases 
fracture mechanics has to be abandoned in 
favour of empirical criteria for fracture such as 
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critical crack-opening displacement [7]. Even 
where the fracture mechanics approach works 
satisfactorily its theoretical foundation is often 
decidedly insecure. 

This paper is an attempt to encourage a new 
look at fracture mechanics theory. In particular 
it examines a generalized approach which 
removes the serious constraints imposed by the 
three requirements of linear elasticity, rever- 
sibility and infinitesimal strains, with a great 
gain in generality at only a modest sacrifice of 
detail. Using this method several "classical" 
results are derived and thus shown to be far 
more general than previous considerations would 
imply. Some new results are also derived which 
illuminate the physical mechanisms of fracture 
and provide rather more insight into the nature 
of fracture "surface energies" than exists at 
present. 

The new approach still requires much work, 
but it is hoped that these initial considerations 
will stimulate the interest and activity of others 
in this field. Certain aspects of the new theory 
have already been published in the context of 
experimental studies on fatigue [8] in poly- 
ethylene and the adhesion of elastomers [9, 
10]. Because of the much wider implications of 
the theory, however, it has been felt appropriate 
to publish this present more general and extended 
treatment. 

2. Propagation of a crack in an infinite 
elastic lamina 

We begin by considering the case of an infinite 
sheet of material containing a crack of length 2e 
and loaded at infinity by a uniform stress applied 
at right angles to the crack axis. Initially the 
material is considered to be elastic and this 
constraint is relaxed in Section 6 of the paper. 
It is convenient to assume a zero tip radiusfor  
the crack, but no other assumptions are 
required. In particular no requirements are made 
concerning linearity or the magnitude of the 
strains. The situation is sketched in Fig. 1, 
where .If, Y are cartesian co-ordinates (in the 
plane of the lamina) of the point P, referred to a 
fixed origin at the centre of the crack and to the 
undeformed state. 

Let the applied stress at infinity be a0 and the 
corresponding energy density in the material at 
infinity be W0 and let these be held constant 
during propagation of the crack. (Note that W0 
will only be stored energy density for an elastic 
lamina; for the inelastic case, to be treated later, 
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Figure 1 Infinite lamina containing a crack. 

Wo is the work done on unit volume of material 
during a monotonic deformation i.e. the "input 
energy density". The same applies to the local 
energy density W at any point in the stress field.) 

From dimensional considerations only, 

t , - , �9 (la) '~ i~(P)  = o.D~ e c 

W(P) = WoJ 2 '  2 '  to 

where aij(P) is a component of the stress tensor 
at P, and f is a function. 

The strain at infinity, t0, serves to characterize 
the overall level of constraint in the system. For 
linear materials the inclusion of t 0 is redundant, 
but for non-linear solids the spatial distribution 
functions f are not independent of the local 
stress or strain levels. This dependence is 
allowed for by inclusion of t0 since the local 
strain tensor at P is uniquely defined by % and 
the spatial variables x, y (see below). 

We introduce reduced variables, 

x = X / c ;  y = Y / c  (2) 

so that, 
W(P) = Wof(X, y, to). (3) 

The change in energy density at P due to an 
increment of crack growth is, in the limit, at 
constant W0, %, 

dW(P) [-I'Of Ox'~ (~f Dy)l 

? Lt,'~) + y ~  
Wo g(x, y, %) (4) 
s 

where g is another function. 
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The total energy change in the system due to 
propagation of the crack is 

dof ~-, dW(P) 
= s  ~ ~ (5) 

d----~ 
P 

where # is the total energy in the system and 3v 
is the volume element at P, that is 

3v = h~X  8 Y 
= he 2 ~x~y (6) 

where h is the undeformed lamina thickness. 
Thus, from Equations 4-6 

d #  
de - Woch Z g(x, y, ~o)~x~y " (7) 

P 

Referring the energy change to unit area of crack 
interface A and remembering that A = 4 ch, 

dd ~ - - W~ ~ g(x, y, %)~x~y.  (8) 
dA 4 

P 

Now the summation involves only E0 and 
geometrical terms and is carried out in dimen- 
sionless (i.e. x, y) space where the reduced crack 
length is always unity. The summation is thus 
independent of crack length. This still applies if 
the boundary of integration is defined by some 
such condition as or(P) = a0 since this boundary, 
from Equation 1 is itself determined by x, y. We 
may thus write, 

d#  
d A - k~ (%) c Wo (9) 

where k~ is a function of % only. The LHS is of 
course the energy available per area of crack 
interface to propagate the crack. The RHS 
reduces immediately to Griffith's formula for a 
linear material for which, of course, 

Wo = r 

provided kl is replaced by r 

d #  ~rCao 2 
- d--A = 2 E  ( 1 0 )  

Notice, however, that Equation 9 is valid for any 
elastic material regardless of linearity or strain 
magnitude, and thus has far greater generality 
than the Griffith equation. 

When crack propagation occurs, the energy 
available (Equation 9) equals the energy, Y ,  
required to create unit area of new interface, i.e. 

kl (c0) two  = 3-- (11) 

where, of course, Y i s  the usual "fracture energy" 
or "surface work" and is commonly regarded as 
a characteristic of the material. 

The dependence of kl upon % in Equation 9 
is well documented for rubber, where kl 
decreases from ~r to about 2.0 as c 0 increases 
from zero to very high values [16]. 

3. Crack inclined at an angle to the 
X-axis 

If the crack be inclined at an angle to the line of 
action of the applied stress, Equation l b 
becomes, 

0 

where 0 is the angle the crack axis makes with 
the X-axis. On differentiating, 

d W(P) W0 Of Of Of 
= - -  x + + dc c ~xx Y c 0--0~c 

in which O0/Oc is zero if the crack does not 
change direction. 
Thus Equation 4 becomes 

dW(P) - Wo 
d ~  = ---c--  g(x,  y, O, %) 

and finally, 

d#  
d A  = k~(O, %)cWo" (13) 

The effect of inclining the crack is thus to modify 
only the term k~, which will from general 
considerations be a maximum when 0 = 0 and 
zero when 0 = 7r/2. However, this only applies 
if the crack does not change direction. 

4. The pure-shear specimen of Rivlin 
and Thomas 

The analysis given above can be applied to a 
variety of different geometrical arrangements. 
To illustrate this we take the case of an in- 
finitely long lamina containing a crack of 
semi-infinite length, constrained between infinite 
parallel grips separated by a distance t in the 
undeformed state (see Fig. 2). This case cor- 
responds to the "pure shear" specimen by Rivlin 
and Thomas and so named because the state of 
stress set up in the lamina when the grips are 
separated is one of pure shear (except in that 
half of the specimen severed by the crack and 
regions close to the crack tip). 

This case is a second example in which only 
one linear dimension in the X-Y plane is neither 
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Figure 2 The "pure shear" test specimen. 

zero nor infinite and is thus "available" for 
reduction of variables. In this case the reduced 
variables are, 

x = X/l;  y = Y/l  (14) 

and the energy density at infinity, W0, is the 
energy density in pure shear in unperturbed 
regions of the lamina remote from the crack. 

The only identifiable origin for our co-ordinate 
system in this case is the crack tip, so that the 
origin moves with the advancing crack. Then, as 
before, 

dc wo  Lt,  + a c / j  " 

But, 

so that, 

ax/Oc = ( 1 / 0  oX/Oc = - 1 / l \  
Oy/Oc 0 / 0  er/Oc = o S (15) 

dW(P) - Wo Of 
dc l ~x 

Taking the summation as before, we obtain, 

d s �89176 ~ Of 
dA - -~x 3x 3y (16) 

P 

or, letting 3x --+ 0, and introducing the limits of 
r (y = :~ ~) 

d #  
dA i~ i ~176 0f -- dy ~x dx �89 Wol -~ -~ 

d #  
d A  - � 8 9  (17) 

since by Equation 1 , f  = 1 when W(P) = Wo i.e. 
at x = ~ a n d f  = 0 when x = - ~ ,  i.e. in the 
severed region of the specimen. Equation 17 
agrees with the result obtained by Rivlin and 
Thomas by elementary reasoning. 
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5. Cases involv ing  more than one 
" a v a i l a b l e "  d imension 

The cases considered so far were so contrived 
that all but one linear dimension of the specimen 
(in the plane of the lamina) were either zero or 
infinite. Such zero of infinite dimensions will 
be referred to as "unavailable" for the purpose of 
reduction of variables. In practice of course, any 
real test specimen has several available dimen- 
sions and the question arises as to how they affect 
the energy available for crack propagation. 

Consider the centre-crack case treated in 
Section 1 but now allow the specimen to have 
boundaries at X =  ~ a a n d  Y =  + b. Then, 
leaving implicit the dependence o f f  upon E0 for 
brevity, 

\ c  e a a '  (18 

= Wof(Xl ,  Yl, x~, Y2, x3, Y3) 

Then 

dW(P)dc - W~ X1 ~ "{- OC O'X- 2 

+ 0 c ~ x i  + . . . .  

But OX/Oc = O Y/Oc = 0, for a fixed origin, so 
that, 

dW(P) dc W~ [ (x1 ~)  '{- (Yl ~-~i)] ~ 
Of course, f itself is still dependent upon a, b so 
that we may write, 

dW(P) Wo 
= - -  - -  g(Xl, Yl, c/a, c/b) (19) 

dc c 

since x~ = xlc/a etc. The terms c/a, c/b are 
constant with respect to summation over xl, 
yl space so that the energy available for crack 
propagation becomes finally, 

- O~/OA = kx(c/a , c/b, co) cWo (20) 

which is to be contrasted and compared with 
Equation 9 from which it differs in that k~ is now 
a function of ratios involving the specimen 
dimensions. Clearly the treatment applies to 
any number of "available" linear parameters 
including, for example, the crack tip radius. As 
c/a, c/b -~  0, kl reverts to its value for the infinite 
lamina. 

The general form of Equation 20 must embrace 
all genuine finite-width and similar corrections 
applied to the infinite lamina formula when 
using actual test-pieces. 
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6. Infinite inelast ic  lamina 
We now turn to reconsider the case treated in 
Section 1 but relaxing the final constraint of 
classical elasticity, namely the requirement of 
perfectly elastic (i.e. thermodynamically rever- 
sible) deformation. No previous analysis of 
fracture mechanics has done this although, of 
course, plastic zones have been "allowed for" by 
various devices, and non-linear elastic deforma- 
tions have been employed to mimic irreversible 
deformations. The present treatment takes into 
consideration inelasticity occurring anywhere in 
the specimen and not just around the crack tip. 
As will be seen, the treatment leads to a general 
relationship between the "apparent surface 
energy" or surface work 3- expended in the 
formation of unit area of crack interface, and the 
true surface energy Yo defined as the energy 
required to break unit area of atomic bonds 
across the fracture plane. 

As before we have, 

W(P) = Wof(X, y, %). 

As the crack propagates the spatial distribution 
of energy density changes, but provided 
the function f is everywhere single valued 
this change is fully accounted for by differen- 
tiation as employed previously (Equafon 4). 
Consider now, however, an inelastic material 
which has an unloading stress-strain curve which 
differs from its loading stress-strain curve (Fig. 
3). The energy density is no longer a single 
valued function of stress or strain so that, in 
general, it will no longer be a single valued 
function of the spatial variables x, y. Thus, 
whilst for elements subject to monotonic loading 
we may still write, leaving the dependence 
f =  f(e0) implicit for brevity, 

W(P) = Wof(X, y) 

we must allow a different function for elements 
undergoing unloading from a stress tensor ev, 

W(P) = Wo F(x, y, av) (21) 
where 

(F)~=o = f (22) 

but otherwise F v a f  The dependence on ~p must 
be allowed because the unloading stress-strain 
curve is not unique but depends on the maximum 
stress levels achieved in the stress cycle. Clearly 
Equation 22 applies because as stress tends to 
zero all materials ultimately behave elastically. 

/ UNLOADING 

STRAIN 
Figure 3 I n e l a s t i c  d e f o r m a t i o n .  

We thus have, 

dW(P) 
dc 

f } for elements loading as 
Wo g(x, y) the crack propagates C 

7 for elements 
Wo ~G(x, y, crp)) unloading 

C L 

where the function G is to F as g is to f .  
Summing over the stress field gives 

d~ - cW~ I ( ~  g(x' y) ~x ~Y 
(23) 

Pv 

where L, U stand for loading, unloading re- 
spectively. Equation 23 can be put into a more 
helpful form by reference to Fig. 4. This is a 
schematic plot of energy density increments 
• A W against stress increments • Aai;, repre- 
senting perturbations produced in the stress and 
energy states ~(P), W(P) (achieved at the point 
P by monotonic loading) by incremental growth 
of the crack. Elastic behaviour is represented by 
the solid line of slope, S, at the origin which 
gives 

~k A W = S(:~ Aa,~j). (24) 

Inelastic behaviour is represented by the broken 
line which gives 

A c A W = ~ - S A ( T i j  

- A W = - ~SA~gjf (25) 

where ~<1,  and is the energy density recovered 
at the point P divided by that which would have 
been recovered from an elastic solid over the 
same negative stress increment. (It is assumed 
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Figure 4 Elastic and inelastic energy density increments. 

that no energy is radiated as stress waves.) 
This enables us to write, 

dW(P) v d W(P) 
de = ~ dc L" (26) 

The parameter ~ is, of  course, a function of the 
state of stress at P before crack propagation and 
of other factors affecting energy loss, namely the 
temperature T and the rate of strain denoted R. 

~x = ~(ap, T, R) .  (27) 

This enables us to re-write Equation 23 as 

-d-A - c Wo g(x, y) 8y 8y (28) 
PL 

Pu 

Pv 
(29) 

Let (I - ~) = /3. Since the stress tensor C~p is 
given by Equation 1 we may write 

= ~o(~o, T, R) gl(x, y) (30) 

where g~ is another function, and 

Pu 

01) 

=-- k~(~o, T, R)cWo . (32) 

The quantity - dd/dA is here the actual energy 
available for forming crack surface after deduc- 
tion of all energy losses throughout the speci- 
men. At the moment of propagation it must, 
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therefore, equal the actual energy requirement 
per area of interface i.e. the surface energy J-o. 

7. Relation between actual and apparent 
surface energies in fracture 

To distinguish between the quantities - d#/dA 
in Equations 9 and 32 respectively we re-write 
these equations, re-introducing the E 0 dependence 
explicitly 

do* 1 
dA = k l  (E0) e W 0 (33)  

= d--A = k2(ao, T, R, %) t w o "  (34) 

The first expression is the energy available for 
crack propagation in a perfectly elastic solid and, 
when the crack actually propagates, must 
therefore also equal, 3-, the total energy expended 
by the system to cause unit area of growth. This 
is true whether the material is elastic or inelastic. 
The difference between the two cases is that for 
the elastic case all this energy is available for 
bond rupture at the fracture plane whilst in the 
inelastic case some of this energy is dissipated in 
the material by inelastic deformation process 
leaving only a proportion for bond fracture. This 
remaining proportion is given by Equation 34 
and must attain a particular value, Y-0, to break 
the bonds and cause propagation. Under con- 
ditions of crack propagation, then, 

3 -  = k I e W  o (35)  

J-o = k2 two  (36) 
whence, 

Y = 3- o kl/k2(cro, T, R) ---- J'o~(%, T, R) .  (37) 

This important result tells us that the surface 
work in any material is given by the energy 
necessary to break unit area of bonds across the 
fracture plane (i.e. the surface energy according 
to one definition) multiplied by a "loss function" 
q~ which varies with the external constraint 
a0 (or Wo), the temperature and the rate of crack 
propagation, and any other factor affecting the 
loss characteristics of the material. ~b reduces to 
unity if the material is everywhere perfectly 
elastic. 

8. Some observations on the behaviour 
of the loss function 

We have, 

PL~ 
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For zero energy loss (/30 = 0) and q~-~ 1, but con- 
versely as/3 o increases it attains some finite value 
at which q) --, oo. At this juncture, Equation 35 
shows crack propagation is no longer possible 
and wholesale deformation of the body takes 
place. A good example of this is chewing gum 
and the good adhesive properties of this material 
are a direct consequence of the same result! In 
such materials /3 o is sufficiently high to give 
infinite values for ~. The transition from crack 
propagation to wholesale inelastic deformation 
is given by 

ka = /30 Z g2(x, y) 8x 8y (39) 
P• 

and is thus independent of crack length. The 
fact that, in general, /3 o will increase with 
increasing or0, (or W0) has two results. Firstly it 
means that q) and thus .Y-- will increase with 
increasing ~0, i.e. the energy requirement for 
propagation is not a material constant for a 
given rate and temperature, but increases with 
the stress or strain level in the specimen. 

This effect is superimposed upon the depen- 
dence of kl upon e 0 discussed in Section 2 and 
arising from non-linearity in an elastic solid. 

The effect will also have a characteristic 
manifestation in the plots commonly used to 
determine Y ,  namely those in which the critical 
value of W 0 to cause propagation (cr0~ in the 
case of near Hookean solids) is plotted against 
c -1 to give a straight line graph. If ~-- were 
independent of W0 such a straight line would 
pass through the origin, since, 

Y-c  -1 = k x W o .  (40) 

If, however, J -  increases with W0, the plot will be 
deflected to give an apparent intercept at some 
positive c -a value. This effect is found in many 
published data, notably that of Berry [ l l ]  for 
PMMA as quoted along with more recent results, 
by Reed and Squires [12] (see Fig. 5). Some 
confusion arises because errors arising from the 
use of infinite-plate formulae for finite-width 
specimens produces the same effect, but the 
effect persists even when finite width corrections 
are made. No doubt many examples exist for 
the more ductile metals which may not have 
been published because of the failure of the data 
to fit linear fracture mechanics. 

The second effect of the (b (Cro) dependence is 
potentially even more striking. For  large values 
of c, the condition for propagation (Equation 35) 
is satisfied for relatively low values of W0 at 
which/3o and thus ~ have their minimum values. 

12 
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Figure 5 Data from (a) Berry's quasi-static tests and (b) 
Reed and Squires hypersonic tests on PMMA showing 
intercepts when fracture stress is plotted against the 
square root of reciprocal crack length. 

It is possible, as c decreases and W0 increases to 
maintain the condition for propagation, that 
/3 o increases with W 0 sufficiently to cause q) to go 
to infinity (Equation 38). If  this occurs (and this 
will depend on the magnitudes of/30 and Z in 

pv- 

Equation 38 as well as the dependence of/30 on 
W0), the phenomenon of notch brittleness is 
predicted. That is, crack propagation is possible 
only for c greater than some critical value. For  
lower c values, q~ --+ oo and wholesale inelastic 
deformation of the body will occur rather 
than crack propagation. 

9. Conclusion 
It is clear from Section 8 that the relatively 
explicit form of ~, along with Equation 37 of 
Section 7 provide a powerful tool for the 
understanding and even prediction of fracture 
phenomena in an unlimited class of solids. In a 
subsequent publication the power of the new 
approach will be illustrated by application to 
phenomena such as adhesive failure and fatigue. 

It has not yet been possible to explore the 
relation, if any, between the new theory and the 
work of Rice [13] and others [14, 15] on the 
contour integral method for solving stress and 
strain distributions around crack tips. This also 
must be postponed to a subsequent paper. 
However, certain points can be made even at this 
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stage. Firstly, the present theory, like that  of 
Rice, concentrates a t tent ion on energy density as 
a fundamenta l  characteristic of the "stress" field. 
Secondly, the contour  integral method  permits 
the considerat ion of non- l inear  materials,  as 
does the present work. However, a fundamenta l  
difference arises f rom the fact that  Rice's 
approach considers only the loading of  elements 
i.e. in effect it considers a non- l inear  elastic [14] 
situation. The present theory still seems to be 
the only one in  which the unloading of inelastic 
elements is taken into account.  I t  is difficult to 
see how any fracture criterion can be valid which 
neglects this aspect. 
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